Topological method for symmetric periodic orbits for maps with a reversing symmetry

نویسندگان

  • Daniel Wilczak
  • Piotr Zgliczyński
چکیده

We present a topological method of obtaining the existence of infinite number of symmetric periodic orbits for systems with reversing symmetry. The method is based on covering relations. We apply the method to a four-dimensional reversible map.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II

We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-JupiterOterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. More...

متن کامل

On symmetric ! - limit sets in reversible

Let ? O(n) be a nite group acting orthogonally on IR n. We say that ? is a reversing symmetry group of the ow f t if ? has an index two subgroup ~ ? whose elements commute with f t and for all elements 2 ? ? ~ ? and all t, f t (x) = f ?t (x). In dimensions n = 1; 2 we describe all symmetry groups of !-limit sets for such reversible ows. In case n 1 we give group and representation theoretic res...

متن کامل

Hamiltonian Systems Near Relative Periodic Orbits

We give explicit differential equations for a symmetric Hamiltonian vector field near a relative periodic orbit. These decompose the dynamics into periodically forced motion in a Poincaré section transversal to the relative periodic orbit, which in turn forces motion along the group orbit. The structure of the differential equations inherited from the symplectic structure and symmetry propertie...

متن کامل

A Note on the Periodic Orbits and Topological Entropy of Graph Maps

This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.

متن کامل

Numerical Continuation of Symmetric Periodic Orbits

The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for symmetric dynamical systems. But there are hardly any results on the numerical computation of those bifurcations yet. In this paper we show how spatiotemporal symmetries of periodic orbits can be e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006